Abstract

Can biofilms enhance the rates of phosphorus removal in wastewater treatment? In order to narrow the scientific gap on the effect of biofilm thickness on the activity and microbial community of phosphorus-accumulating bacteria, this study investigated biofilms of 30 to 1000 µm thickness in a moving bed biofilm reactor. Measurements on 5 different biofilm carriers showed that biomass-specific phosphorus release and uptake rates increased as a function of biofilm thickness for biofilms thinner than about 110 µm but were lower for thicker biofilms of about 550–1000 µm. The reduced phosphorus uptake and release rates in the thickest biofilms can result from substrate mass transfer limitations whereas the low activity in the thinnest biofilms can be related to a too high turnover rate in the biofilm due to heterotrophic growth. Additionally, the microbial ecology of the different biofilms confirms the observed phosphorus uptake and release rates. The results from the full-length 16S rRNA gene sequencing of the bacterial community showed that the thicker biofilms were characterized by higher relative abundance (40–58%) of potential phosphorus accumulating genera Zoogloea, Acinetobacter, Dechloromonas and Ca. Accumulibacter. In contrast, the thinner biofilms were dominated by the genus Ferribacterium (34–60%), which might be competing with phosphorus-accumulating bacteria as indicated by the relatively high acetate uptake rates in the thinner biofilms. It is concluded that there is an optimal biofilm thickness of 100–500 µm, at which the phosphorus accumulating bacteria have the highest activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.