Abstract

We use two-state ratchet models containing single and coupled Brownian motors to understand the role of motor-microtubule binding, ATPase reaction rate and dimerisation on the translational velocities of Kinesin motors. We use model parameters derived from the experimental measurements on KIF1A, KIF13A, KIF13B, and KIF16B motors to compute velocities in μm/s. We observe that both the models show the same trend in velocities (KIF1A > KIF13A > KIF13B > KIF16B) as the experimental results. However, the models significantly underpredict the velocities when compared with the experiments. The predictions of the coupled-motor model are closer to the experiments than those of the single-motor model. Our results indicate that the variation of ATPase reaction rate governs the trend in velocities for the above four motors. The variation of motor-microtubule binding affinity and the coupling strength between the motor domains may only have a secondary effect. More rigorous models that incorporate the power-stroke mechanism are necessary for better quantitative compliance with the experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.