Abstract

The present work was to carry out the development of high performance Ni-based catalyst for Steam-CO2 reforming of methane (SCR) which is suitable for Fischer-Tropsch synthesis of GTL- FPSO (floating, production, storage and offloading) process. The bimetallic Ni-Cr catalysts were prepared by co-impregnation method. The Ni and Cr loading amount were fixed at 12 wt% and 3~7 wt%, respectively. The catalytic reaction was conducted at 900 °C and 20 bar with reactant feed ratio of CH4:CO2:H2O:Ar = 1:0.8:1.3:1 and GHSV = 25,000 h(-1). The Cr-modified Ni/γ-Al2O3 catalyst was characterized by BET surface area analysis, X-ray diffraction (XRD), H2-temperature programmed reduction (TPR), H2-chmisorption, CO2-temperature programmed desorption (TPD) and Transmission electron microscopy(TEM). To confirm the amount and type of the carbon deposition, the used catalysts were examined by Thermogravitic analysis (TGA) and Field emission-scanning microscopy/Energy dispersive X-ray analysis (FE-SEM/EDX). It was found that the bimetallic Ni-Cr catalyst exhibits highly dispersed Ni particles with strong metal-to-support interaction (SMSI) as well as excellent catalytic activity, resulting in the suppression of Ni sintering and carbon deposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call