Abstract

The thalamic reticular nucleus (RTN) is the major source of inhibitory contacts in the thalamus and thus plays an important role in regulating the excitability of the thalamocortical network. Inhibition occurs through GABAergic synapses on relay cells as well as through GABAergic synapses between reticularis neurons themselves. Here we report that the role and mechanisms of this inhibition, which frequently have been studied using N-methyl derivatives of the gamma-aminobutyric acid-A (GABAA) receptor antagonist bicuculline, should be revisited. Using the whole cell patch-clamp technique in thalamic slices from young rats, we observed an enhancement by bicuculline methiodide, methobromide, and methochloride (collectively referred to as bicuculline-M; 5-60 microM) of the low-threshold calcium spike burst in RTN neurons that persisted in the presence of tetrodotoxin (1 microM) and was not reproduced in picrotoxin (100-300 microM). The effect did not involve activation of any GABA receptor subtype. Voltage-clamp recordings showed that bicuculline-M blocked the current underlying the low-threshold spike burst afterhyperpolarization (AHP), an effect that was mimicked by apamin (100 nM). Recordings from nucleated patches extracted from reticularis neurons demonstrated that this effect was not mediated by modulation of the release of an unidentified neurotransmitter but that bicuculline-M directly blocks small conductance (SK) channels. The AHP-blocking effect also was observed in other brain regions, demonstrating that although bicuculline-M is a potent GABAA receptor antagonist, it is of limited value in assessing GABAergic network interactions, which should be studied using picrotoxin or bicuculline-free base. However, bicuculline-M may provide a useful tool for developing nonpeptide antagonists of SK channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.