Abstract
The thalamic reticular (RE) nucleus is a key structure in the generation of spindles, a hallmark bioelectrical oscillation during early stages of sleep. Intracellular recordings of RE neurons in vivo revealed the presence of prolonged hyperpolarizing potentials preceding spindles in a subgroup (30%) of neurons. These hyperpolarizations (6-10 mV) lasted for 200-300 ms and were present just before the onset of spontaneously occurring spindle waves. Corticothalamic volleys also were effective in generating such hyperpolarizations followed by spindles in RE neurons. A drop of up to 40% in the apparent input resistance (R(in)) was associated with these hyperpolarizing potentials, suggesting an active process rather than disfacilitation. Accordingly, the reversal potential was approximately -100 mV for both spontaneous and cortically elicited hyperpolarizations, consistent with the activation of slow K(+) conductances. QX-314 in the recording pipettes decreased both the amplitude and incidence of prolonged hyperpolarizations, suggesting the participation of G protein-dependent K(+) currents in the generation of hyperpolarizations. Simultaneous extracellular and intracellular recordings in the RE nucleus demonstrated that some RE neurons discharged during the hyperpolarizations and, thus, may be implicated in their generation. The prolonged hyperpolarizations preceding spindles may play a role in the transition from tonic to bursting firing of RE neurons within a range of membrane potential (-60 to -65 mV) at which they set favorable conditions for the generation of low-threshold spike bursts that initiate spindle sequences. These data are further arguments for the generation of spindles within the thalamic RE nucleus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.