Abstract

The effect of bias current on the complexity and time-delay signature of chaotic signals in semiconductor lasers with polarization preserved optical feedback has been studied experimentally and theoretically. The peak value of the autocorrelation coefficient and the normalized permutation entropy at the feedback round trip time are used to quantify the time delay signature and complexity, respectively. The results show that the time-delay signature is approximately in an inverse relationship with the complexity of chaos when the semiconductor laser is subject to low or strong optical feedback. However, the inverse relationship disappears when the laser operates at higher bias currents with intermediate feedback strength. The simulation results are qualitatively agreed with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.