Abstract

The adoption of fiber-reinforced polymer (FRP) bars in lieu of traditional steel reinforcement for concrete structures has gained prominence. Nevertheless, prevailing international standards have not incorporated provisions to assess the significant contribution of FRP materials to the axial capacity and deformability of compression members. This study investigates the impact of Basalt (BFRP) ties on the axial performance of full-scale concrete columns reinforced with BFRP and Glass (GFRP) rebars, alongside traditional steel longitudinal rebars. Ten columns were subjected to concentric loading, with parameters including the type of longitudinal rebars (BFRP, GFRP, and steel), spacing of BFRP ties (180 mm, 120 mm, and 60 mm), and diameter of steel rebars (16 mm and 20 mm). Varied steel rebar diameters aimed to discern the influence of axial stiffness on column behavior. Results indicate an 18 % to 26 % higher axial load capacity in steel-reinforced concrete (RC) columns compared to FRP-RC columns. Both types of FRP rebars contributed approximately 12 % to the axial capacity. Reducing BFRP tie spacing from 180 mm to 60 mm significantly increased deformability by up to 250 % in FRP-RC columns and ductility by up to 14 % in steel-RC columns. The study highlights conservative predictions in existing design equations (ACI 440.11–22 and CSA S806-12) for the axial load capacity of BFRP and GFRP RC columns, underestimating by 14 % to 20 %, as they neglect the contribution of FRP rebars. Utilizing a concrete crushing strain of 3,000 µε and 3,500 µε as the ultimate FRP compressive strain produced predictions closest to the experimental axial load capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call