Abstract
Smoking is the main risk factor for lung cancer, mainly due to presence of nitrosamines and polycyclic aromatic hydrocarbons, including benzo[a]pyrene (BP) in tobacco smoke composition. The genotoxic effect of BP is based on the high DNA-binding ability of its metabolites, while the epigenetic effects are mediated by a change in the expression of cancer related genes or regulatory RNAs. It has been shown that women have a higher risk to develop lung cancer upon smoking rather than men. We hypothesized that crosstalk between signaling pathways activated by BP and estrogens could underlie the sex-dependent differences in miRNAs expression. To test this hypothesis, male and female rats were subjected to short-term or long-term BP exposure. Using in silico analysis, miRNAs containing the ER- and AhR-binding sites in the promoters of the genes (or host genes) were selected. During chronic exposure of BP the expression of miR-22-3p, -29a-3p, -126a-3p, -193b-5p in the lungs of male rats were significantly increased, while the level of miRNA-483-3p were decreased. Expression of miRNA-483-3p was up-regulated during chronic BP exposure in the lungs of female rats and the levels of other studied miRNAs were unchanged. In turn, changes in the expression of miRNAs were followed by changes in the expression of their target genes, including PTEN, EMP2, IGF1, ITGA6, SLC34A2, and the observed changes in female and male rat lungs were varied. Thus, our results suggest that sex-dependent epigenetic effects of BP may be based on different expression of AhR- and ER- regulated miRNAs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have