Abstract
We report the effect of basal-plane stacking faults (BSFs) on X-ray diffraction (XRD) of non-polar (1120) a-plane GaN films with different SiNx interlayers. Complete SiNx coverage and increased three-dimensional (3D) to two-dimensional (2D) transition stages substantially reduce BSF density. It was revealed that the Si-doping profile in the Sidoped GaN layer was unaffected by the introduction of a SiNx interlayer. The smallest in-plane anisotropy of the (1120) XRD ω-scan widths was found in the sample with multiple SiNx layers, and this finding can be attributed to the relatively isotropic GaN mosaic resulting from the increase in the 3D-2D growth step. Williamson-Hall (WH) analysis of the (h0h0) series of diffractions was employed to determine the c-axis lateral coherence length (LCL) and to estimate the mosaic tilt. The c-axis LCLs obtained from WH analyses of the present study’s representative a-plane GaN samples were well correlated with the BSFrelated results from both the off-axis XRD ω-scan and transmission electron microscopy (TEM). Based on WH and TEM analyses, the trends in BSF densities were very similar, even though the BSF densities extracted from LCLs indicated that the values were reduced by a factor of about twenty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JSTS:Journal of Semiconductor Technology and Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.