Abstract

This study determines the effect of atrazine and fenitrothion no-observed-effect-levels (NOEL) on the binding of corticosterone (B) to corticosterone-binding-globulin (CBG) in an amphibian and a mammal. Plasma from five cane toads and five Wistar rats was exposed to atrazine and fenitrothion at the NOEL approved for Australian fresh water residues and by the World Health Organization (WHO). The concentration required to displace 50% (IC50) of B binding to CBG was determined by a competitive microdialysis protein assay. Competition studies showed that both atrazine and fenitrothion at NOEL are able to compete with B for CBG binding sites in toad and rat plasma. The IC50 levels for atrazine in toads and rats were 0.004nmol/l and 0.09nmol/l respectively. In the case of fenitrothion the IC50 level found in toads was 0.007nmol/l, and 0.025nmol/l in rats. Plasma dilution curves showed parallelism with the curve of B, demonstrating that these agro-chemicals are competitively inhibiting binding to CBG. The displacement of B by atrazine and fenitrothion would affect the total:free ratio of B and consequently disrupt the normal stress response. This is the first time that the potential disruptive effect of atrazine and fenitrothion on B-CBG interaction at the NOELs has been demonstrated in amphibian and mammalian models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call