Abstract

The effect of the environment on crack-growth processes in silicon nitride was studied by investigating the static and fatigue crack-growth behavior of small surface cracks, as influenced by testing (i) in the ambient environment, (ii) in distilled water, (iii) under vacuum, and (iv) in toluene. A principal finding was that testing under cyclic conditions led to crack-growth rates that were much higher in air than in toluene, whereas testing under static conditions in air or toluene led to minor differences in the rate of static fatigue crack growth. This difference in sensitivity to the environment under static and cyclic loading conditions was attributed, in part, to a much-greater extent of microcracking at the surface ahead of the main crack in air under cyclic conditions, in comparison to that in other environments. This propensity for microcracking at the surface in air under cyclic conditions also was reflected in the aspect ratios of the crack shapes that developed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call