Abstract
Beside Fusarium toxins, Alternaria toxins are among the most commonly found mycotoxins in wheat and wheat products. Currently, investigations of possibilities of reduction of Alternaria toxins in the wheat-processing chain are limited. Therefore, the aim of this study was to explore the potency of cold atmospheric plasma treatments, as a new non-thermal approach, for reduction of alternariol (AOH), alternariol monomethyl ether (AME) and tentoxin (TEN) content in spiked white wheat flour samples. Samples were treated with plasma generated in the air during 30 s to 180 s, with an increment step of 30 s, and at four varying distances from the cold plasma source (6 mm, 21 mm, 36 mm and 51 mm). The reduction of the Alternaria toxins content in samples after treatment was monitored by high performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The maximum reduction of the examined Alternaria toxins was obtained by treatment performed at 6 mm distance from the plasma source, lasting 180 s, resulting in reductions of 60.6%, 73.8% and 54.5% for AOH, AME and TEN, respectively. According to the obtained experimental results, five empirical models in the form of the second-order polynomials were developed for the prediction of AOH, AME and TEN reduction, as well as the temperature and the moisture content of the wheat flour, that gave a good fit to experimental data and were able to predict the response variables successfully. The developed second-order polynomial models showed high coefficients of determination for prediction of experimental results (between 0.918 and 0.961).
Highlights
Wheat (Triticum aestivum L.) is one of the most important food crops, being among the ten most produced commodities [1,2]
Some of the species, such as OH, NO, O, after excitation emit in near UV-visual range and this emission is recordable by the optical emission spectroscopy (OES) technique
An emission spectra of the discharge in air was recorded in a wide range of wavelengths from 270 nm to 860 nm by using the optical emission spectroscopy (OES) technique
Summary
Wheat (Triticum aestivum L.) is one of the most important food crops, being among the ten most produced commodities [1,2]. The global quality of common wheat and wheat-based products are interrelated to various features such as protein content, protein quality, and presence of contaminants that affect the safety, generally associated with the absence of toxigenic molds and their secondary metabolites, mycotoxins [3]. Frequency and ability of this genus to produce a wide range of toxins is a significant and present threat to the health of humans and animals. Due to their prevalence in various foods and cumulative effect [4], mutagenic, teratogenic and possibly carcinogenic effects of Alternaria toxins are possible. According to the European Food Safety Authority (EFSA), major risk factors for Alternaria toxin dietary exposure are cereals and cereal-based products [5]. Alternaria toxins most frequently present on wheat include alternariol (AOH), alternariol monomethylether (AME), tenuazonic acid (TeA), tentoxin (TEN) and altertoxins (ATXs) [7]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.