Abstract

The exposure to Alternaria toxins from grain and grain-based products has been reported to be related to human esophageal cancer in China. In this study, a total of 370 freshly harvested wheat kernel samples collected from Anhui province of China in 2015 were analyzed for the four Alternaria toxins tenuazonic acid (TeA), tentoxin (TEN), alternariol (AOH) and alternariol monomethyl ether (AME) by high performance liquid chromatography-tandem mass spectrometry method (HPLC-MS/MS). TeA was the predominant toxin detected followed by TEN, AOH and AME. The concentrations of the four Alternaria toxins varied geographically. The samples from Fuyang district showed higher TEN concentration levels than the other regions studied (p < 0.05). Furthermore, 95% (352/370) of the wheat samples were positive for more than one type of Alternaria toxins. Positive correlation was observed between concentration levels of TeA and TEN, AOH and AME, TeA and AOH, and the total dibenzopyrone derivatives (AOH + AME) and TeA. Results indicate that there is a need to set the tolerance limit for Alternaria toxins in China, and more data on the contamination of these toxins in agro-products is required.

Highlights

  • Alternaria species are pathogenic, endophytic and saprophytic fungi that have been reported to cause extensive spoilage of crops such as grain, tomato, potato, citrus, apple and sunflower seed in the field or after harvest [1,2,3,4,5,6,7,8]

  • These Alternaria toxins can be classified into three main categories: the dibenzo-α-pyrones, which include alternariol (AOH), alternariol monomethyl ether (AME), altenuisol (AS) as well as altenuene (ALT); tetramic acid derivatives including tenuazonic acid (TeA); and the perylene derivatives altertoxins I, II and III (ATX I, II and III) [9,10]

  • Our research showed that Alternaria species were the with Fusariuminvading toxins

Read more

Summary

Introduction

Alternaria species are pathogenic, endophytic and saprophytic fungi that have been reported to cause extensive spoilage of crops such as grain, tomato, potato, citrus, apple and sunflower seed in the field or after harvest [1,2,3,4,5,6,7,8]. Alternaria species can produce more than 70 toxins, of which only a small proportion have been chemically characterized. These Alternaria toxins can be classified into three main categories: the dibenzo-α-pyrones, which include alternariol (AOH), alternariol monomethyl ether (AME), altenuisol (AS) as well as altenuene (ALT); tetramic acid derivatives including tenuazonic acid (TeA); and the perylene derivatives altertoxins I, II and III (ATX I, II and III) [9,10]. Alternaria toxins show cytotoxic activity among mammalian cells, and fetotoxicity and teratogenicity among mice and hamsters [11]. Some individual mycotoxins such as AOH and AME, though not acutely toxic, are mutagenic and genotoxic in various in vitro systems [12]. TeA is considered to be of the highest toxicity among the Alternaria toxins, and has been proven to be toxic to several animal species, e.g., mice, chicken and dogs [8]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.