Abstract

Asymmetric rolling is a high-tech method based on the principles of severe plastic deformation (SPD). In the present paper, it is shown that Cu-0.8Cr-0.1Zr alloy is highly strengthened during asymmetric rolling due to structure refinement to an ultrafine-grained state. For example, in only one pass, at the accumulated strain 0.94 ± 0.20, the strength increases from 265 to 425 MPa. During the deformation process, the structure becomes refined, with the average size of fragments reaching 235 ± 90 nm. Structure heterogeneity is also observed in the cross section of a sample, which is associated with different rotation speeds of the rolls. The shape of grains in the central zone of samples corresponds to the state after conventional symmetric rolling. However, in the zone adjacent to the roll rotating at a higher speed, mechanical texture of grains is similar to that after shear. Subsequent aging of Cu-0.8Cr-0.1Zr alloy at 450°C makes it possible to achieve the ultimate strength 560 MPa and electrical conductivity 82% IACS, which exceeds the characteristics of the strengthened steel by 10-15%. The analysis of contributions to strengthening during asymmetric rolling reveals that the main contribution comes from refinement of the grain structure to an ultrafine-grained state, which amounts to 58%. The fractions of the dislocation and dispersion contributions comprise 15 and 20%, respectively. Compared to conventional rolling, as well as other deformation methods that provide the same level of accumulated strain and strengthening in one cycle, such as equal channel angular pressing-conform, asymmetric rolling is the most promising due to its simpler process scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.