Abstract

In this letter, we present the fabrication and characterization of a zinc oxide (ZnO)-based nanogenerator for piezoelectric micro-energy harvesting by combining thin films of amorphous silicon (a-Si) and ZnO. We utilized the a-Si thin film as an interlayer to assemble several a-Si/ZnO-stacked piezoelectric nanogenerators (SZPNGs) on indium tin oxide (ITO)-coated polyethylene naphthalate substrates. We investigated the influence of the a-Si layer thickness on the output voltages of the SZPNGs and demonstrated the existence of an optimal a-Si thickness for maximizing the output voltage. Overall, the SZPNGs generated higher output voltages than a conventional ZnO-based piezoelectric nanogenerator (ZPNG) lacking an a-Si interlayer, indicating enhanced performance. In particular, the SZPNG based on the optimal a-Si thickness exhibited a sixfold higher output voltage compared with the conventional ZPNG. This improved performance was ascribed to a combination of the Schottky barrier at the ITO/a-Si interface, preventing the screening effect and the relatively high dielectric constant (εr≈13) of a-Si, minimizing the loss of the piezoelectric potential induced in the ZnO layer. The results herein are expected to assist the development of even more advanced ZnO-based piezoelectric nanogenerators in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call