Abstract

Zinc oxide (ZnO) thin films were deposited onto different substrates — tin-doped indium oxide (ITO)/glass, ITO/polyethylene naphthalate (PEN), ITO/polyethylene terephthalate (PET) — by the radio-frequency (RF) magnetron sputtering method. The effect of various O2/(Ar+O2) gas flow ratios (0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6) was studied in detail. ZnO layers deposited onto ITO/PEN and ITO/PET substrates exhibited a stronger c-axis preferred orientation along the (0002) direction compared to ZnO deposited onto ITO/glass. The transmittance spectra of ZnO films showed that the maximum transmittances of ZnO films deposited onto ITO/glass, ITO/PEN, and ITO/PET substrates were 89.2%, 65.0%, and 77.8%, respectively. Scanning electron microscopy (SEM) images of the film surfaces indicated that the grain was uniform. The cross-sectional SEM images showed that the ZnO films were columnar structures whose c-axis was perpendicular to the film surface. The test results for a fabricated ZnO thin film based energy harvester showed that its output voltage increased with increasing acceleration of external vibration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call