Abstract
AbstractCobalt(III) corroles are the most commonly studied types of metallocorroles, yet the details of their electronic structure, ground spin states and place of redox events are not always straightforward. Corroles are redox active, potentially non‐innocent ligands, and it has been found through various experimental and computational techniques, that the innocent or non‐innocent behavior is modulated by the apical ligands bound to the cobalt center. In this work, we aim to analyze the effect of corrole substituents and number and type of apical ligands on the electronic structure of cobalt corroles through density functional and wavefunction theories, and to determine the relative energies between closed‐ and open‐shell states. We further perform preliminary analyses on the place of electron abstraction upon oxidation and on the effect of the corrole and apical ligands on the cobalt ligand field splittings. We find that both ligand field and electron‐donating or withdrawing effects determine the relative energies of open‐shell and closed shell singlet states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.