Abstract

The bottom-gate structure ZnO based thin film transistors (ZnO-TFTs) using Bi1.5Zn1.0Nb1.5O7 (BZN) thin films as gate insulator were fabricated on Pt/SiO2/Si substrate by radio frequency magnetic sputtering. We investigated the effect of annealing temperature at 300, 400, and 500 °C on the performance of BZN thin films and ZnO-TFTs. XRD measurement confirmed that BZN thin films were amorphous in nature. BZN thin films annealed at 400 °C obtain the high capacitance density of 249 nF/cm2, high dielectric constant of 71, and low leakage current density of 10−7 A/cm2 on/off current ratio and field effect mobility of ZnO-TFTs annealed at 400 °C are approximately one order of magnitude and two times, respectively higher than that of ZnO-TFTs annealed at 300 °C. When the annealing temperature is 400 °C, the electrical performance of ZnO-TFTs is enhanced remarkably. Devices obtain a low sub-threshold swing of 470 mV/dec and surface states density of 3.21 × 1012cm−2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call