Abstract

1 at.% Al-doped Zn1−xCdxO (x = 0–8 at.%) thin films were prepared on glass substrates by sol–gel method. The codoping films retained the hexagonal wurtzite structure of ZnO, and showed preferential c-axis orientation. The effect of annealing ambient (in vacuum and nitrogen) on the optical and electrical properties of (Cd,Al)-codoped ZnO films were investigated using transmission spectra and electrical measurements. The transmittances of the codoping films were obviously degraded by vacuum annealing to 50–60 %, but enhanced to 70–80 % after nitrogen annealing. The carrier concentration and Hall mobility both increased, and resistivity decreased with narrowing band gap of Al-doped Zn1−xCdxO, below different critical concentrations x = 4 % (in vacuum) and x = 6 % (in nitrogen). It is revealed that the conductivity is also improved by Cd doping along with band gap modification. The variations in optical and electrical properties are ascribed to both the changes of the crystallinity and concentration of oxygen vacancies under different ambient. In view of transmittance and conductivity, nitrogen annealing might be a more effective post-annealing way than vacuum annealing for our (Cd,Al)-codoped ZnO films to meet the requirements of transparent conducting oxide (TCO).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.