Abstract

Purpose The influence of the cam angular speed on the pressure, film thickness and temperature profiles at some selected angular positions together with the oil characteristics are investigated. Design/methodology/approach A high-order polynomial cam is used, and thermal elastohydrodynamic lubrication (EHL) calculations are carried out by the multi-grid method and line-line scanning technique. Findings It is found that the film thickness decreases with a decrease in angular speed. The depth of the dimple that occurred in the reverse motion is also reduced because of the recession in the “temperature–viscosity wedge” effect. Originality/value It is revealed that the reduction in the cam angular speed makes the classical big surface dimple evolve into a small centralized dimple during the opposite sliding motion. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0327

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call