Abstract

To understand how amylose content and crystal type regulated the digestibility of starch–lipid complex nanoparticles, this study used waxy corn starch (WCS), normal corn starch (NCS) and high-amylose corn starch (HCS) with different amylose contents and NCS (A-type), potato starch (PtS, B-type) and pea starch (PS, C-type) with different crystal types to investigate the effects of amylose content and crystal type on the structure and digestibility of starch-lauric acid (LA) complex nanoparticles. A significant increase in complex index (CI), R1047/1022, relative crystallinity, and enthalpy of gelatinization (ΔH) was found in starch-LA complex nanoparticles with amylose contents increasing. The increases in resistant starch (RS) and slowly digestible starch (SDS) contents of WCS-LA complex nanoparticles, NCS-LA complex nanoparticles and HCS-LA complex nanoparticles were 29.33%, 40.29% and 93.90% compared to their respective controls. Furthermore, PtS-LA complex nanoparticles (PtS-LANPs) showed the highest increase in CI, R1047/1022, relative crystallinity, and ΔH compared to NCS-LA complex nanoparticles (NCS–LANPs) and PS-LA complex nanoparticles (PS-LANPs). For RS and SDS contents, the highest increased was found in PtS-LANPs (56.99%), followed by NCS–LANPs (40.29%) and PS-LANPs (31.44%) as compared to their respective controls. Results could provide basic data to prepare starch–lipid complex nanoparticles with desired digestibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call