Abstract

The effects of NH(4)Cl addition on batch hybridoma cell growth at different external pH values (pH(e)) were investigated in a bioreactor at constant pH and dissolved oxygen concentration. In agreement with measurements in flasks, changes in pH(e) over the range 6.8-7.6 had minor effects on growth. Addition of 3 mM NH(4)Cl had little effect on cell growth while 10 mM NH(4)Cl caused a substantial growth inhibition, Measurements of the effects of pH(e) and NH(4)Cl concentration on cell metabolism gave similar results for cells grown in flasks in an incubator and in the bioreactor. As pH(e) decreases, the integral cell yield on glucose increases. There is a correlation between the effects of pH(e) on glycolysis and previous measurements of its effects on intracellular pH (pH(i)). Increases in NH(4)Cl concentration were previously determined to decrease pH(i) and are shown here to decrease the integral cell yield on glucose. At all pH(e) values in the absence of NH(4)Cl, glutamine is depleted at the time the maximum cell density is reached. Both pH(e) decreases and NH(4)Cl concentration increases lead to decreases in the integral cell yield on glutamine. Changes in pH(e) and in the NH(4)Cl concentration that cause growth inhibition have no effect on the specific antibody production rate for cells grown in flasks in an incubator or in the bioreactor. Changes in the NH(4)Cl concentration have no effect on the quality of the antibody produced, to a first level of characterization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.