Abstract

The epithelial Na(+) channel, ENaC, is exposed to a wide range of proton concentrations in the kidney, lung, and sweat duct. We, therefore, tested whether pH alters ENaC activity. In Xenopus oocytes expressing human alpha-, beta-, and gammaENaC, amiloride-sensitive current was altered by protons in the physiologically relevant range (pH 8.5-6.0). Compared with pH 7.4, acidic pH increased ENaC current, whereas alkaline pH decreased current (pH(50) = 7.2). Acidic pH also increased ENaC current in H441 epithelia and in human primary airway epithelia. In contrast to human ENaC, pH did not alter rat ENaC current, indicating that there are species differences in ENaC regulation by protons. This resulted predominantly from species differences in gammaENaC. Maneuvers that lock ENaC in a high open-probability state ("DEG" mutation, proteolytic cleavage) abolished the effect of pH on human ENaC, indicating that protons alter ENaC current by modulating channel gating. Previous work showed that ENaC gating is regulated in part by extracellular Na(+) ("Na(+) self-inhibition"). Based on several observations, we conclude that protons regulate ENaC by altering Na(+) self-inhibition. First, protons reduced Na(+) self-inhibition in a dose-dependent manner. Second, ENaC regulation by pH was abolished by removing Na(+) from the extracellular bathing solution. Third, mutations that alter Na(+) self-inhibition produced corresponding changes in ENaC regulation by pH. Together, the data support a model in which protons modulate ENaC gating by relieving Na(+) self-inhibition. We speculate that this may be an important mechanism to facilitate epithelial Na(+) transport under conditions of acidosis.

Highlights

  • As a member of the DEG/ENaC family of ion channels, ENaC shares common structural and functional features with channels that are gated by diverse stimuli

  • No analogous ligand has yet been identified for ENaC, it is clear that the extracellular domain is important in modulating ENaC activity

  • Divalent cations including Zn2ϩ and Ni2ϩ are thought to alter ENaC activity by binding to the extracellular domain [20, 21]. These findings suggest that the extracellular domain might function as a sensor to allow a variety of signals in the extracellular environment to modulate ENaC activity

Read more

Summary

Introduction

As a member of the DEG/ENaC family of ion channels, ENaC shares common structural and functional features with channels that are gated by diverse stimuli. Mutations of conserved histidine residues in the extracellular domains of ␣- and ␥ENaC alter Naϩ self-inhibition [18]. To further explore this possibility and to understand the mechanisms by which pH regulates Naϩ transport, we tested the effect of protons on the activity of human ENaC.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call