Abstract
The objective of this study was to examine the potential of Al-5Ti-1B and Al-1Ti-3B master alloys in reducing the hot tearing susceptibility of AZ91E magnesium alloy. The low penetration of magnesium alloys for structural automotive applications can be attributed to their poor castability during permanent mould casting. An improvement in the castability of magnesium alloys will result in the production of larger castings for automotive applications and a reduction in vehicle weight. The addition levels examined for both master alloys were 0.1, 0.2, 0.5 and 1.0 wt.%. The master alloys were added to the AZ91E alloy and stirred for 30 seconds. For the graphite mould castings used to observe grain refinement, the pouring and mould temperatures were 720 and 750 °C respectively. The hot tear castings were produced using a “dog bone” shaped H-13 tool steel mould. The pouring and mould temperatures were 720 and 180 °C respectively. Without master alloy addition, the base AZ91E casting had severe hot tears. The addition of Al-5Ti-1B slightly reduced hot tears while Al-1Ti-3B addition significantly reduced hot tears. The addition of Al-1Ti-3B also significantly reduced the grain size of the castings from 113 µm in the base alloy to 72 µm with 1.0 wt.% addition. The addition of Al-5Ti-1B did not lead to a reduction of hot tears because of large TiAl3 particles acting as stress risers during solidification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.