Abstract

Magnetometry and X-ray diffraction have been used to study the structural state and magnetic properties of the system of oxides with an iron garnet structure, Y3 − xGdxFe5O12 (x = 0, 0.75, 1.5), in the course of amorphization via irradiation by fast neutrons. It has been established that the partial replacement of diamagnetic yttrium ions by paramagnetic gadolinium dramatically changes the behavior of the magnetic moment of the garnets during their gradual amorphization. The magnetic moment of the yttrium iron garnet decreases significantly with increasing fluence, whereas the magnetic moments of gadolinium-alloyed garnets, on the contrary, increase noticeably along with the simultaneous increase in the compensation temperatures of the sublattice magnetizations. The observed differences in the radiation behavior of the garnets are explained by the different behavior of the iron and gadolinium sublattices under irradiation. It is shown that the irradiation to a fluence of 3 × 1020 cm−2 leads to a complete amorphization of all samples investigated. It has been established that the amorphous samples were in a spin-glass state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.