Abstract
Stable free radicals are the long-lived macromolecule radicals formed in pyrolysis, and their reactions play an essential role in biochar formation. The alkali and alkaline earth metals (AAEMs) in biomass might be involved in the radical reactions during pyrolysis. Figuring out the effect of AAEMs on the reactions of stable free radicals can further understand the radical reaction mechanism and the formation of biochar in pyrolysis. In this paper, the in-situ electron paramagnetic resonance (EPR) spectroscopy was used to detect the stable free radicals in cocoanut pyrolysis, and the effect of AAEMs was analysed by the comparative experiments. The results indicate that the stable free radicals in nascent chars, which are generated from the thermal decomposition of biomass, could react and couple with each other. The AAEMs in biomass improve the activity of stable free radicals and promote the radical-radical coupling during high-temperature pyrolysis above 400 °C, which inhibits the condensation of aromatic structure and generates more weak bonds in hot nascent char. After stopping the heating, the weak bonds will be broken by cooling stress, thus inducing radical reactions and further changing the char structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.