Abstract
High velocity penetration of a rigid conical impactor into a ductile target with air gaps between the plates is studied using the cylindrical cavity expansion approximation describing impactor–target interaction. It is showed that the latter model predicts improvement of the ballistic performance of the target with the increase of air gaps. It is found analytically that the ballistic limit velocity of the target consisting of N plates with a fixed total thickness with large air gaps increases with the increase of N. The conditions are discussed when the predicted effects can be most pronounced.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have