Abstract

Zirconia repair could be a feasible alternative option to total replacement in fractured zirconia-based restorations. Maximising the bond strength by enriching zirconia with fluorapatite glass-ceramics (FGC) powder has been addressed and compared to other surface treatments. Besides resin composite, other repair materials have been proposed and compared. Zirconia blocks received different surface treatments (A—sandblasting with tribochemical silica-coated alumina (CoJet). B—sandblasting with FGC powder (FGC), C—fluorapatite glass-ceramic coat+ neodymium-doped yttrium aluminum garnet laser irradiation (FGC + Nd: YAG), and D—no surface treatment). The surface roughness, topography, and crystallinity were investigated by a profilometer, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses, respectively. For each surface treatment, three repair materials (feldspathic porcelain, lithium disilicate, and resin composite) were bonded to zirconia with 10, Methacryloyloxydecyl dihydrogen phosphate (MDP)–Monobond Plus/ Multilink Automix. Bonded specimens were thermocycled for 10,000 cycles and tested for shear bond strength (SBS) at a speed of 1 mm/min, followed by the analysis of the mode of failure. FGC + Nd: YAG laser group reported the highest surface roughness and monoclinic content compared to CoJet, FGC, and control groups. The highest mean SBS was found in FGC-blasted zirconia, followed by FGC + Nd: YAG laser and CoJet treated groups. However, the lowest SBS was found in control groups regardless of the repair material. Sandblasting zirconia with FGC powder increased SBS of resin to zirconia with lower monoclinic phase transformation compared to FGC + Nd: YAG or CoJet groups.

Highlights

  • Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria 21568, Egypt

  • This study investigated the effect of sandblasting has been reported for single crowns and multiple units fixed partial denture, rezirconia with fluorapatite glass-ceramics (FGC) or silica-coated alumina powders in addition to FGC + neodymium-doped yttrium aluminium garnet (Nd): YAG laser spectively

  • It is concluded that t-m phase transformation depends on the surface treatment employed, where blasted zirconia with CoJet sand or Nd: YAG laser treatment to FGCcoated zirconia revealed the highest number of monoclinic crystals compared to FGCblasted zirconia

Read more

Summary

Introduction

Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria 21568, Egypt. Maximising the bond strength by enriching zirconia with fluorapatite glass-ceramics (FGC) powder has been addressed and compared to other surface treatments. Other repair materials have been proposed and compared. Sandblasting with FGC powder (FGC), C—fluorapatite glass-ceramic coat+ neodymium-doped yttrium aluminum garnet laser irradiation (FGC + Nd: YAG), and D—no surface treatment). Three repair materials (feldspathic porcelain, lithium disilicate, and resin composite) were bonded to zirconia with 10, Methacryloyloxydecyl dihydrogen phosphate (MDP)–Monobond Plus/. The highest mean SBS was found in FGC-blasted zirconia, followed by FGC + Nd: YAG laser and CoJet treated groups. The lowest SBS was found in control groups regardless of the repair material. Sandblasting zirconia with FGC powder increased SBS of resin to zirconia with lower monoclinic phase transformation compared to FGC + Nd: YAG or

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call