Abstract
Human eggs are highly aneuploid, with female age being the only known risk factor. Here this aging phenomenon was further studied in Swiss CD1 mice aged between 1 and 15 mo. The mean number of eggs ± SEM recovered from mice following superovulation peaked at 22.5 ± 3.8 eggs/oviduct in 3-mo-old females, decreasing markedly between 6 and 9 mo old, and was only 2.1 ± 0.2 eggs/oviduct by 15 mo. Measurement of aneuploidy in these eggs revealed a low rate, ∼3-4%, in mice aged 1 and 3 mo, rising to 12.5% by 9 mo old and to 37.5% at 12 mo. Fifteen-month-old mice had the highest rate of aneuploidy, peaking at 60%. The in situ chromosome counting technique used here allowed us to measure with accuracy the distance between the kinetochores in the sister chromatids of the eggs analyzed for aneuploidy. We observed that this distance increased in eggs from older females, from 0.38 ± 0.01 μm at 1 mo old to 0.82 ± 0.03 μm by 15 mo. Furthermore, in 3- to 12-mo-old females, aneuploid eggs had significantly larger interkinetochore distances than euploid eggs from the same age, and measurements were similar to eggs from the oldest mice. However, the association between aneuploidy and interkinetochore distance was not observed at the oldest, 15-mo age, despite such measurements being maximal. We conclude that in aging CD1 mice, a reduction in the ovulated egg number precedes a rise in aneuploidy and, furthermore, except at very advanced ages, increased interkinetochore distance is associated with aneuploidy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.