Abstract

The effect of aging on the evolution of interfacial microstructure and mechanical properties of Pb-rich PbSnAg solder joints with different Sn content was investigated. Tensile samples were prepared by soldering two pieces of Ni or Cu strips resulting in joints with gap sizes of about 250 μm. Multi-layered structures composed of Ni coated Si-chips soldered onto Ni/Cu metallized ceramic substrates were used for fatigue testing. All samples were subjected to thermal aging at 250 °C up to 500 h. Microstructural investigations revealed that independent from the substrate material, increased Sn content of the solder alloy results in improvement of the tensile and fatigue properties of the joints and a higher growth rate of the interfacial intermetallic compound (IMC) layers. It was found that the thickness of the wettable substrate especially in the case of low-Sn alloys, also affects the interfacial properties of high temperature PbSnAg solder joints. In this case, a reduced Sn content in solder joints results in weakening of the interface during the reflow process and subsequent thermal aging. The dominant failure mode of the solder joints subjected to cyclic loading was delamination of the interfacial IMC layer from the substrate. Finite element simulations were conducted by using a strain rate and pressure dependent material model for PbSnAg solder in order to analyse the states of stress and strain during static and cyclic loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call