Abstract

Zn-Ag-Cu alloys have recently attracted attention as alloy candidates for biomedical applications, but, to date, they have not achieved the required mechanical properties. To improve the mechanical properties of Zn-Ag-Cu-base alloys, in this work, the effects of the presence of increasing amounts of Ag and Cu as alloying elements on the properties of four 0.05% Mg-micro-alloyed Zn-Ag-Cu base alloys are explored. The alloys were manufactured in an electric furnace with a protective atmosphere using increasing amounts of Ag and Cu as alloying agents, and were cast in a metallic mold. The samples obtained were thermomechanically processed by hot extrusion. Three of the four alloys under study presented increasing amounts of the second phase (Ag, Cu)Zn4, high mechanical properties, a microstructure and mechanical behavior characteristic of heteromaterials with a heterogeneous lamella-structure, and met the requirements of the mechanical properties, corrosion rate, antibacterial properties against S. aureus, and the cytotoxicity required for biomedical applications. It seems possible to tune the properties of the ZnAgCu-0.05% Mg alloys by changing the Ag and Cu contents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.