Abstract
Aerobic exercise is a promising intervention for patients with schizophrenia, but structural neuroplastic effects on brain regions relevant to the pathophysiology of the disease remain unclear. This study aimed to elucidate longitudinal changes in cortical thickness after aerobic exercise intervention in schizophrenia patients and the relationship of these changes to clinical correlates.We investigated 21 schizophrenia patients and 23 healthy controls who performed aerobic exercise and 21 schizophrenia patients who played table soccer. The 12-week exercise intervention was combined with computer-assisted cognitive remediation training from week 6 to week 12. Magnetic resonance imaging (MRI) scans were acquired at baseline and weeks 6, 12, and 24. The thickness of the entorhinal, parahippocampal, and lateral and medial prefrontal cortices was assessed with FreeSurfer 6.0.The schizophrenia aerobic exercise group showed a significant increase of cortical thickness in the right entorhinal cortex at week 6, and we found a significant correlation between the cortical thickness of the right lateral prefrontal cortex at baseline and improvement of social adaptation at week 12. In the schizophrenia table soccer and healthy control groups, we found no significant longitudinal change in cortical thickness through the intervention and follow-up period and no correlation of cortical thickness at baseline with clinical measures.Our results suggest that aerobic exercise in schizophrenia modulates the thickness of the entorhinal cortex, a structure adjacent to the hippocampus. Greater cortical thickness of the right lateral prefrontal cortex appears to predict better clinical response to an aerobic exercise intervention in patients with schizophrenia.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have