Abstract

Adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and inorganic pyrophosphate partially inhibit the oxidation of exogenous cytochrome c by cytochrome c oxidase of submitochondrial particles (with or without detergent treatment) or by a purified preparation when it is assayed polarographically in buffers of nonbinding ions at pH 7.8. ATP is somewhat more inhibitory than ADP. The inhibition is never greater than 50%, and it is always less than an equal concentration of Mg2+ ions is present or when the assays are run at pH 6. In contrast, the effect of ATP, ADP, and pyrophosphate on oxidase assays run spectrophotometrically is a similar slight stimulation of the oxidase of submitochondrial particles treated with deoxycholate and little or no effect on purified oxidase. The reaction of the oxidase of submitochondrial particles with the endogenous cytochrome c is stimulated by the nucleotides, as is the reduced nicotinamide adenine dinucleotide (NADH) oxidase activity. The observations can be explained by binding of ATP, ADP, or pyrophosphate to cytochrome c so that the formation of an especially reactive combination of cytochrome c and cytochrome oxidase previously postulated [Smith, L., Davies, H. C., & Nava, M. E. (1979) Biochemistry 18, 3140] is prevented. The data give no evidence that respiration via cytochrome c oxidase is regulated physiologically by direct effects of ATP or ADP on its activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.