Abstract

It is difficult to gain effective Ti-Al fusion welding joints due to their differences in thermal properties and the appearance of brittle Ti-Al Intermetallic Compounds (IMCs). The experiments of laser fusion welding for TC4 titanium and 7075 aluminum alloy were carried out, temperature field and ductility/brittleness, as well as chemical potential of elements, were calculated, and the effect of adding Nb foil on mechanical properties of the weld was also investigated. The results suggested that Nb atoms tend to diffuse toward Al side, which is conducive to the participation of Nb in the metallurgical reaction and contributes to forming the Ti-Nb-Al IMC layer at the interface. As the thickness of Nb foil increases, the tensile-shear force of joint climbs first but then declines, and reaches the highest value of 1663 N with 0.10 mm-thickness Nb foil, representing 58.38% enhancement compared with the non-added one. Adding Nb foil slows down the heat transfer as a blocker, and thus both the melting amount of Al and the mixing area of Ti and Al decrease. In addition, Nb alloying reduces the brittleness of the Ti-Al compound. Hence, the joint properties of titanium/aluminum are improved with the addition of Nb foil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call