Abstract

In the present paper, the effect of adding graphene on the fracture strength of the Araldite adhesive was studied. Experimental specimens were made of PMMA and then were bonded using a thin adhesive layer. Different loading modes were created by using the modified Arcan fixture. The effect of adding graphene to the adhesive layer was studied at four different weight ratios of graphene, including 0.00, 0.25, 0.50, and 1.00%. The results derived suggest that the experimental specimens with 0.5 wt % graphene have the highest fracture force. For specimens with the same amount of graphene, the highest fracture force was obtained under the mode II loading condition. The experimental results were compared with the results of the finite element model. The fracture behavior of an adhesive layer was modeled using the cohesive zone model. The maximum nominal stress criterion and the quadratic power law criterion were used for the crack initiation and propagation in the adhesive layer, respectively. The comparison between the numerical and experimental results shows overall good agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call