Abstract

Although hypoxia is known to affect membrane excitability of various neurons by various mechanisms, the effects of hypoxia on substantia gelatinosa (SG) neurons have not yet been elucidated. In whole-cell or perforated patch-clamp recordings from SG neurons, we showed that acute hypoxia induces a reversible hyperpolarization of -6.1+/-1.3 mV of the resting membrane potential and an outwards current of 9.48+/-1.71 pA at a holding potential of -60 mV. The reversal potentials of the hypoxia-induced current depended on [K(+)](o). The hypoxia-induced hyperpolarization and outwards current were abolished completely by BaCl(2), but not by CsCl. Glibenclamide, a blocker of K(ATP) channels, blocked the hypoxia-induced hyperpolarization. Pretreatment with cromakalim, an opener of K(ATP) channels, occluded the hypoxia-induced hyperpolarization. Any alteration by hypoxia was not observed in the presence of an internal solution with a high [ATP] (10 mM). The above results suggest that hypoxia-induced hyperpolarization in SG neurons is mediated by activation of K(ATP) channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.