Abstract

Kawasaki disease is a kind of self-limited systemic vasculitis involving middle and small arteries, which usually occurs in children under 5years old. Excessive inflammatory response caused by activation of monocytes is one of the important mechanisms of Kawasaki disease. Activated monocytes secrete large amounts of inflammatory mediators such as TNF-α and IL-1β. Activin A, a member of transforming growth factor-β superfamily, is a multifunctional growth and transforming factor. Several experimental evidences pinpoint that Activin A can regulate multiple biological function of the immune system. However, whether Activin A is involved in regulation of activation of monocytes in Kawasaki disease was not well characterized. Here, this study showed that the expression of Activin A in serum decreased in acute-phase Kawasaki disease. Furthermore, Activin A inhibits activin type IIA receptor, activin type IB receptor, CD86 and CD80 expression in over-activated monocytes. In addition, Activin A inhibited Smad3 expression and NF-κB signaling pathways. Specific function and mechanism of Activin A in acute-phase Kawasaki disease need further study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.