Abstract
Statement of problemA vinegar-hydrogen peroxide mixture has been reported to be effective in eliminating Candida albicans and Staphylococcus aureus from acrylic resin, and its action has been reported to be comparable with that of sodium hypochlorite or peracetic acid. However, the effects of this mixture on cobalt-chromium alloys remain unknown. PurposeThe purpose of this in vitro study was to evaluate the surface roughness, Knoop microhardness, surface free energy, and wettability of a cobalt-chromium alloy when exposed to a vinegar-hydrogen peroxide mixture. Material and methodsFifty specimens of cobalt-chromium alloy were fabricated and immersed for 900 minutes, simulating 3 months of a daily 10-minute immersion in the following chemical agents (n=10): distilled water (W); 0.5% sodium hypochlorite (H); 3% hydrogen peroxide and water dilution in 1:1 ratio (HP); white-wine vinegar and water dilution in 1:1 ratio (V); and vinegar and hydrogen peroxide mixture in 1:1 ratio (VHP). Surface roughness, Knoop microhardness, surface free energy, and wettability were measured with single blinding before and after immersions. Data were statistically analyzed by using 2-way repeated measures ANOVA (α=.05). ResultsThe vinegar-hydrogen peroxide mixture did not affect the surface roughness or Knoop microhardness. However, 0.5% sodium hypochlorite significantly increased the roughness and decreased microhardness. Surface free energy and wettability increased after immersions, regardless of the types of solution. ConclusionsImmersion in a vinegar-hydrogen peroxide mixture did not affect the surface characteristics of a cobalt-chromium alloy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.