Abstract

BackgroundPurified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages), Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value) necessary to inactivate 90% of the initial bioburden (decimal reduction time) was experimentally determined.MethodsPseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild) bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H2O2) and 0.45% peracetic acid.ResultsThe efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log10) population (n cycles). To kill 90% of the initial population (or one log10 cycle), the necessary time (D-value) was for P. aeruginosa into: (i) 0.5% citric acid, D = 3.8 min; (ii) 0.5% hydrochloric acid, D = 6.9 min; (iii) 70% ethanol, D = 9.7 min; (iv) 0.5% sodium bisulfite, D = 5.3 min; (v) 0.4% sodium hydroxide, D = 14.2 min; (vi) 0.5% sodium hypochlorite, D = 7.9 min; (vii) mixture of hydrogen peroxide (2.2%) plus peracetic acid (0.45%), D = 5.5 min.ConclusionThe contact time of 180 min of the system with the mixture of H2O2+ peracetic acid, a total theoretical reduction of 6 log10 cycles was attained in the water purified storage tank and distribution loop. The contact time between the water purification system (WPS) and the sanitary agents should be reviewed to reach sufficient bioburden reduction (over 6 log10).

Highlights

  • Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens

  • The wild isolated strains showed up to twice the decimal reduction time than B. subtilis ATCC 9372 against sodium hydroxide, confirming that the evaluation of the efficacy of any chemical disinfectant applied to the disinfection of the water purification system (WPS) should be based on the Gram-negative bacteria isolated from the same system

  • Pseudomonas species and other gram-negative bacteria form sludge which resists cleaning and disinfection procedures and it is a source of pyrogens, these can be avoided if purified water is analyzed [21]

Read more

Summary

Introduction

Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Water is one of the major commodities used by the pharmaceutical industry It may be presented as an excipient, or used for reconstitution of products, during synthesis, during production of finished product or as a cleaning agent for rinsing vessels, equipment, primary packing materials [1]. Purified water is commonly used in various preparations for pharmaceutical solutions and other applications such as cleaning of semi-critical devices, cleaning facilities and equipment. It is commonly used as the main component in peritoneal dialysis solutions in hospitals, in nutrient solutions (including baby formula) and liquid nutrient solutions prepared in the hospital nursery, for administration to children and debilitated patients. Control of the quality of water, in particular, the microbiological quality, is a major concern and the pharmaceutical industry devotes considerable resource to the development and maintenance of water purification systems [1]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call