Abstract
Five different soccer balls, each possessing the traditional 32-panel surface design, were tested in a wind tunnel. Only seam depth and width varied between the balls. Wind-tunnel tests and an examination of correlation revealed that seam width with a linear fit [Formula: see text] and [Formula: see text] was a stronger indicator of a ball’s critical speed than seam depth. Wind-tunnel data were used for computational modeling of many soccer-ball trajectories. It was determined that variations in seam geometry resulted in fluctuations up to 4 m in the horizontal range of hard-hit, no-spin kicks that travel approximately 68 m. Those seam geometry variations also contributed to lateral deflections up to 4 m for the aforementioned hard-hit, no-spin kicks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.