Abstract
Experiments were carried out to determine whether replication of alkylated DNA could be involved in the initiation of hepatocellular carcinoma which results from a single administration of dimethylnitrosamine (DMN) given after partial hepatectomy. The incidence of tumours is higher when DMN is given during the wave of DNA synthesis induced by the operation than when given in the early prereplicative stage. Therefore the alkylation of DNA in the regenerating liver by DMN given at these times and the effect of DMN on DNA synthesis were investigated. The extent, duration and pattern of alkylation of DNA, including the formation of 0-6-methylguanine, were similar whether DMN was given in the early pre-replicative stage (6 h after the operation) or during the period of DNA synthesis (at 24 h). DMN given a 6 h very greatly reduced the wave of DNA replication which would otherwise have ensued. When given at 24 h, by which time DNA synthesis was already taking place, DMN reduced the rate of incorporation of (-3H)thymidine after 1-2 h delay. However, in neither case was DNA synthesis reduced to the level occurring in normal intact liver. Treatment with diethylnitrosamine (DEN) at 6 h or at 24 h had a similar effect to DMN on the wave of DNA replication induced by partial hepatectomy. Methyl methanesulphonate (MMS given in the early pre-replicative stage delayed the wave of DNA synthesis by about 8 h, but when it did take place the extent of synthesis was as great as in untreated animals. When given during the period of DNA replication, MMS rapidly reduced the rate of synthesis. As in the case of the nitrosamines, synthesis was not reduced to the level occuring in normal intact animals. The difference from the nitrosamines lies in the nature of the alkylated bases formed in DNA. The fact that a single treatment with DMN induces cancer in partially hepatectomised animals but not in intact adult animals is not considered to be due to a gross difference in the nature of the alkylation of DNA. The experiments described support the concept that replication of DNA containing bases which are likely to mispair during replication may be necessary to 'fix' the lesion and thus cause a permanent inheritable change in the genetic material.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have