Abstract

The objectives of this study were to use transgenic sows that overexpress IGF-I in milk to investigate the effect of a short-term fast on piglet intestinal morphology and disaccharidase activity and to determine how milk-borne IGF-I influences the response to fasting. After farrowing, litters were normalized to 10 piglets. On d 6, piglets (n = 30) suckling IGF-I transgenic (TG) sows and piglets (n = 30) suckling nontransgenic sows (control) were assigned randomly to three treatments: fed piglets (0 h), which remained with the sow until euthanized on d 7, or fasted piglets, which were removed from the sow at either 6 or 12 h before euthanasia on d 7. Serum IGF-I and IGFBP, intestinal weight and length, jejunal protein and DNA content, disaccharidase activity, and villus morphology were measured. Fasting for 12 h resulted in a negative weight change between d 6 and 7 (quadratic response to fasting; P < 0.001). Piglets suckling TG sows tended to have greater intestinal length (P = 0.068), but no effect of IGF-I overexpression was noted for intestinal weight. Fasting, however, resulted in linear (P < 0.001) and quadratic (P = 0.002) decreases in intestinal weight. Serum IGF-I did not differ between control and TG sows, but decreased linearly (P = 0.003) with fasting. Serum IGFBP-4 decreased (linear and quadratic; P < or = 0.02) with fasting, whereas IGFBP-1 increased quadratically (P < 0.001) with fasting. Jejunal villus height, width, and crypt depth were all increased with fasting (linear and quadratic; P < 0.04). Disaccharidase activity was not affected by fed state; however, piglets suckling TG sows had greater jejunal lactase-phlorhizin hydrolase (P < 0.01) and sucrase-isomaltase (P = 0.02) activities than control piglets. In summary, intestinal weight, villus morphology, serum IGF-I, serum IGFBP-1 and -4, and piglet BW change were altered (P < or = 0.02) in response to fasting. Thus, the duration of food deprivation before euthanization should be considered when designing experiments to assess intestinal development or the IGF axis, as the magnitude of differences between the fed and fasted state may exceed those expected as a result of experimental treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call