Abstract
The effect of a scratch formed on the running surface of a curved rail, due to the slide of a locomotive wheel, on the formation and evolution of rail corrugation is investigated in detail with numerical methods when a wheelset is steadily and repeatedly curving. In the calculation we consider a combination of Kalker’s rolling contact theory with non-Hertzian to be modified, a linear frictional work model and a vertical dynamics model of railway vehicle coupled with a curved track. Also the influence of different speeds of wheelset curving through the scratch on the development of the corrugation is taken into account. The numerical results indicate that a scratch causes strong contact vibration between the wheel and rail, and initiation and development of rail corrugation under the condition of steady creepage occurring between the wheel and curved rail. The wave-length of the corrugation depends on the speed of wheelset curving and the natural frequencies of the track.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.