Abstract

Objective: To explore the application prospect of a new pH-responsive tertiary amine monomer dodecylmethylaminoethyl methacrylate (DMAEM) modified resin adhesive (DMAEM@RA) in the prevention and treatment of secondary caries. Methods: Five percents DMAEM was added to the resin adhesive to synthesize DMAEM@RA for modifying. Streptococcus mutans (Sm) and Lactobacillus casei (Lc) biofilms were cultured on resin adhesive and DMAEM@RA, respectively. The culture systems were set up at pH=7.4, 6.0, 5.5, and 5.0. The antimicrobial activity of DMAEM@RA was evaluated by quantitative PCR. The effects of DMAEM@RA on biofilm thickness, bacterial amount, and extracellular polysaccharides were studied by scanning electron microscope (SEM) and extracellular polysaccharide staining. Real-time fluorescence quantitative PCR was used to study the effect of DMAEM@RA on the expression levels of cariogenic genes in Sm. Results: DMAEM@RA could significantly reduce the amount of Sm and Lc under acidic conditions, especially Lc. At pH=5.0, the logarithm value of co-cultured Sm bacteria [lg (CFU/ml)] in DMAEM@RA group (7.58±0.01) was significantly lower than that in control group (7.87±0.03) (t=14.32, P<0.001), and the logarithm value of Lc bacteria [lg (CFU/ml)] (7.29±0.04) was also significantly lower than that in control group (7.93±0.15) (t=6.93, P=0.002). SEM observed that the bacteria decreased and the cell fragments appeared in DMAEM@RA group. In addition, DMAEM@RA significantly reduced the biomass of extracellular polysaccharides in the dual-species biofilm under acidic conditions. At pH=5.0, the biomass of extracellular polysaccharides in DMAEM@RA group [(25.13±3.14) mm3/mm2] was significantly lower than that in the control group [(42.66±7.46) mm3/mm2] (t=3.75, P=0.020). DMAEM@RA could significantly up-regulate the expressions of gtfB and gtfC genes in Sm under acidic conditions. At pH=5.0, gtfB and gtfC genes were significantly up-regulated by (14.64± 0.44) times and (2.99±0.20) times, respectively (t=-42.74, P<0.001; t=-13.55, P<0.001). Conclusions: The DMAEM@RA has a good antibacterial effect under acidic conditions, demonstrating that it has a good potential to prevent the occurrence and development of secondary caries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.