Abstract
We report on the effect of noise on the characteristics of the bistable polariton emission system. The present experiment provides a time-resolved access to the polariton emission intensity. We evidence the noise-induced transitions between the two stable states of the bistable polaritons. It is shown that the external noise specifications, intensity and correlation time, can efficiently modify the polariton Kramers time and residence time. We find that there is a threshold noise strength that provokes the collapse of the hysteresis loop. The experimental results are reproduced by numerical simulations using Gross-Pitaevskii equation driven by a stochastic excitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.