Abstract

A precise gravimetric geoid model is determined by using Stokes formula assuming that there is no topography above the geoid. Then, the geoid model is simply corrected by considering the constant crustal density of 2670 kg m−3 for topographical mass. In fact, the actual density of topographical mass differs about ±20% from the constant value. Recently a global crustal density model within 30″ resolution has been released by the University of New Brunswick in Canada. The paper is devoted to the study of the effect of using this model on the accuracy of gravimetric geoid in a mountainous region in Turkey. Numerical results prove that the differences in the geoid height due to this model may reach up to several decimetres, which should not be ignored in a precise geoid modelling with 1-cm geoid. Thus, it is concluded that the effect of topographical density variations, contained in this model, is significant and should be taken into account in precise geoid determination, particularly in mountainous regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call