Abstract

In this study, we explore the effect of a single flat band in the electronic properties of a ferromagnetic two-dimensional Lieb lattice using the multiband Hubbard model with polarized carriers, spin-up and spin-down. We employ the self-consistent dynamical mean field theory and a Green functions cumulant expansion around the atomic limit to obtain the correlated densities of states while varying the intra- and interband interactions. Our findings demonstrate a renormalization of the correlated density of states in both the spin-up and spin-down carriers as we varied the intra- and interband interactions. We conclude that the presence of a flat band enables the system to maintain a metal state with itinerant ferromagnetism in the spin-up carrier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call