Abstract
Recently, it was demonstrated that 25-hydroxycholesterol (25HC), an oxidized cholesterol derivative, inhibits human immunodeficiency virus type 1 (HIV) entry into its target cells. However, the mechanisms involved in this action have not yet been established. The aim of this work was to study the effects of 25HC in biomembrane model systems and at the level of HIV fusion peptide (HIV-FP). Integration of different biophysical approaches was made in the context of HIV fusion process, to clarify the changes at membrane level due to the presence of 25HC that result in the suppressing of viral infection.Lipid vesicles mimicking mammalian and HIV membranes were used on spectroscopy assays and lipid monolayers in surface pressure studies. Peptide-induced lipid mixing assays were performed by Förster resonance energy transfer to calculate fusion efficiency. Liposome fusion is reduced by 50% in the presence of 25HC, comparatively to cholesterol. HIV-FP conformation was assessed by infrared assays and it relies on sterol nature. Anisotropy, surface pressure and dipole potential assays indicate that the conversion of cholesterol in 25HC leads to a loss of the cholesterol modulating effect on the membrane.With different biophysical techniques, we show that 25HC affects the membrane fusion process through the modification of lipid membrane properties, and by direct alterations on HIV-FP structure. The present data support a broad antiviral activity for 25HC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Biomembranes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.