Abstract

A nickel film electroplated onto a metal substrate can be used as a catalyst for water splitting and a magnetic material for spin valves. Although the nucleation and growth of Ni on Au(111) have already been examined with in situ scanning tunneling microscopy (STM), the current study provides new insights of the structure of the first layer of Ni on an ordered Au(111) electrode in 0.1 M KSO4 + 1 mM H2SO4 + 10 mM NiSO4 (pH 3). Prolonged STM scanning of the Ni monolayer on a Au(111) electrode revealed interfacial mixing to produce a surface alloy, initially assuming segregated Ni domains and later transforming them to a homogeneous Ni/Au phase. The formation of the Ni/Au(111) surface alloy affected the structure of the subsequent bulk Ni deposition. The inclusion of 2-mercapto-1-methylimidazole (MMI) in the deposition bath incurred Ni deposition at a less negative potential and a faster rate, resulting in an overall 5.3 times more Ni deposited on the Au electrode in potentiodynamic experiments. MMI molecules were adsorbed on the Ni deposit to prevent Ni dissolution in the Au(111) electrode. MMI could catalyze the presumed rate-determining step from Ni2+ to Ni+ en route to the metallic Ni. The resultant Ni film with MMI had a 3D texture without a preferred crystal orientation on the Au electrode, as opposed to a layer type growth of Ni on Au(111) without MMI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call