Abstract
Soil functional stability is the capacity of soil functions to resist and recover from an environmental perturbation and can be used to evaluate soil health. It can be influenced by the presence of xenobiotics such as herbicides. The impact of a fresh 2,4-D contamination (36 mg kg −1 dry soil) on soil functional stability was evaluated by comparing the capacity of soil enzyme activities to resist and recover from a heat perturbation for both a clean and 2,4-D-contaminated soil. The functional stabilities of the soils (uniform sands, pH 6.9, 7% (w/w) organic matter) were calculated using the relative soil stability index (RSSI). The RSSI scores indicate the proportion of potential enzyme activity the soil retains after a perturbation compared to the potential activity of an unperturbed soil. Six extra-cellular enzyme activities (acid and alkaline phosphatases, arylsulfatase, urease, protease and β-glucosidase) were monitored in soil microcosms during a 15-day period. During this period, a 60 °C heat perturbation was applied to the soil for 24 h. The activities of arylsulfatase and protease were found to be the most stable following heat perturbation obtaining the highest RSSI scores (87% and 77%, respectively). Urease activity showed the lowest RSSI score (38%). Although all enzyme activities were inhibited by the presence of 2,4-D, the RSSI results indicated that contamination lowered the stability of only three enzyme activities (arylsulfatase, β-glucosidase and urease). The RSSI adequately described resistance, recovery and recovery rate parameters and enabled differentiation between functional stabilities of clean and contaminated soil and between different soil types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.